Code Docs RAG Search
The CodeDocsSearchTool
is a powerful RAG (Retrieval-Augmented Generation) tool designed for semantic searches within code documentation.
CodeDocsSearchTool
Experimental: We are still working on improving tools, so there might be unexpected behavior or changes in the future.
Description
The CodeDocsSearchTool is a powerful RAG (Retrieval-Augmented Generation) tool designed for semantic searches within code documentation.
It enables users to efficiently find specific information or topics within code documentation. By providing a docs_url
during initialization,
the tool narrows down the search to that particular documentation site. Alternatively, without a specific docs_url
,
it searches across a wide array of code documentation known or discovered throughout its execution, making it versatile for various documentation search needs.
Installation
To start using the CodeDocsSearchTool, first, install the crewai_tools package via pip:
Example
Utilize the CodeDocsSearchTool as follows to conduct searches within code documentation:
Substitute ‘https://docs.example.com/reference’ with your target documentation URL and ‘How to use search tool’ with the search query relevant to your needs.
Arguments
The following parameters can be used to customize the CodeDocsSearchTool
’s behavior:
Argument | Type | Description |
---|---|---|
docs_url | string | Optional. Specifies the URL of the code documentation to be searched. |
Custom model and embeddings
By default, the tool uses OpenAI for both embeddings and summarization. To customize the model, you can use a config dictionary as follows:
Was this page helpful?