Overview

CrewAI supports custom LLM implementations through the BaseLLM abstract base class. This allows you to integrate any LLM provider that doesn’t have built-in support in LiteLLM, or implement custom authentication mechanisms.

Quick Start

Here’s a minimal custom LLM implementation:

from crewai import BaseLLM
from typing import Any, Dict, List, Optional, Union
import requests

class CustomLLM(BaseLLM):
    def __init__(self, model: str, api_key: str, endpoint: str, temperature: Optional[float] = None):
        # IMPORTANT: Call super().__init__() with required parameters
        super().__init__(model=model, temperature=temperature)
        
        self.api_key = api_key
        self.endpoint = endpoint
        
    def call(
        self,
        messages: Union[str, List[Dict[str, str]]],
        tools: Optional[List[dict]] = None,
        callbacks: Optional[List[Any]] = None,
        available_functions: Optional[Dict[str, Any]] = None,
    ) -> Union[str, Any]:
        """Call the LLM with the given messages."""
        # Convert string to message format if needed
        if isinstance(messages, str):
            messages = [{"role": "user", "content": messages}]
        
        # Prepare request
        payload = {
            "model": self.model,
            "messages": messages,
            "temperature": self.temperature,
        }
        
        # Add tools if provided and supported
        if tools and self.supports_function_calling():
            payload["tools"] = tools
        
        # Make API call
        response = requests.post(
            self.endpoint,
            headers={
                "Authorization": f"Bearer {self.api_key}",
                "Content-Type": "application/json"
            },
            json=payload,
            timeout=30
        )
        response.raise_for_status()
        
        result = response.json()
        return result["choices"][0]["message"]["content"]
        
    def supports_function_calling(self) -> bool:
        """Override if your LLM supports function calling."""
        return True  # Change to False if your LLM doesn't support tools
        
    def get_context_window_size(self) -> int:
        """Return the context window size of your LLM."""
        return 8192  # Adjust based on your model's actual context window

Using Your Custom LLM

from crewai import Agent, Task, Crew

# Assuming you have the CustomLLM class defined above
# Create your custom LLM
custom_llm = CustomLLM(
    model="my-custom-model",
    api_key="your-api-key",
    endpoint="https://api.example.com/v1/chat/completions",
    temperature=0.7
)

# Use with an agent
agent = Agent(
    role="Research Assistant",
    goal="Find and analyze information",
    backstory="You are a research assistant.",
    llm=custom_llm
)

# Create and execute tasks
task = Task(
    description="Research the latest developments in AI",
    expected_output="A comprehensive summary",
    agent=agent
)

crew = Crew(agents=[agent], tasks=[task])
result = crew.kickoff()

Required Methods

Constructor: __init__()

Critical: You must call super().__init__(model, temperature) with the required parameters:

def __init__(self, model: str, api_key: str, temperature: Optional[float] = None):
    # REQUIRED: Call parent constructor with model and temperature
    super().__init__(model=model, temperature=temperature)
    
    # Your custom initialization
    self.api_key = api_key

Abstract Method: call()

The call() method is the heart of your LLM implementation. It must:

  • Accept messages (string or list of dicts with ‘role’ and ‘content’)
  • Return a string response
  • Handle tools and function calling if supported
  • Raise appropriate exceptions for errors

Optional Methods

def supports_function_calling(self) -> bool:
    """Return True if your LLM supports function calling."""
    return True  # Default is True

def supports_stop_words(self) -> bool:
    """Return True if your LLM supports stop sequences."""
    return True  # Default is True

def get_context_window_size(self) -> int:
    """Return the context window size."""
    return 4096  # Default is 4096

Common Patterns

Error Handling

import requests

def call(self, messages, tools=None, callbacks=None, available_functions=None):
    try:
        response = requests.post(
            self.endpoint,
            headers={"Authorization": f"Bearer {self.api_key}"},
            json=payload,
            timeout=30
        )
        response.raise_for_status()
        return response.json()["choices"][0]["message"]["content"]
        
    except requests.Timeout:
        raise TimeoutError("LLM request timed out")
    except requests.RequestException as e:
        raise RuntimeError(f"LLM request failed: {str(e)}")
    except (KeyError, IndexError) as e:
        raise ValueError(f"Invalid response format: {str(e)}")

Custom Authentication

from crewai import BaseLLM
from typing import Optional

class CustomAuthLLM(BaseLLM):
    def __init__(self, model: str, auth_token: str, endpoint: str, temperature: Optional[float] = None):
        super().__init__(model=model, temperature=temperature)
        self.auth_token = auth_token
        self.endpoint = endpoint
    
    def call(self, messages, tools=None, callbacks=None, available_functions=None):
        headers = {
            "Authorization": f"Custom {self.auth_token}",  # Custom auth format
            "Content-Type": "application/json"
        }
        # Rest of implementation...

Stop Words Support

CrewAI automatically adds "\nObservation:" as a stop word to control agent behavior. If your LLM supports stop words:

def call(self, messages, tools=None, callbacks=None, available_functions=None):
    payload = {
        "model": self.model,
        "messages": messages,
        "stop": self.stop  # Include stop words in API call
    }
    # Make API call...

def supports_stop_words(self) -> bool:
    return True  # Your LLM supports stop sequences

If your LLM doesn’t support stop words natively:

def call(self, messages, tools=None, callbacks=None, available_functions=None):
    response = self._make_api_call(messages, tools)
    content = response["choices"][0]["message"]["content"]
    
    # Manually truncate at stop words
    if self.stop:
        for stop_word in self.stop:
            if stop_word in content:
                content = content.split(stop_word)[0]
                break
    
    return content

def supports_stop_words(self) -> bool:
    return False  # Tell CrewAI we handle stop words manually

Function Calling

If your LLM supports function calling, implement the complete flow:

import json

def call(self, messages, tools=None, callbacks=None, available_functions=None):
    # Convert string to message format
    if isinstance(messages, str):
        messages = [{"role": "user", "content": messages}]
    
    # Make API call
    response = self._make_api_call(messages, tools)
    message = response["choices"][0]["message"]
    
    # Check for function calls
    if "tool_calls" in message and available_functions:
        return self._handle_function_calls(
            message["tool_calls"], messages, tools, available_functions
        )
    
    return message["content"]

def _handle_function_calls(self, tool_calls, messages, tools, available_functions):
    """Handle function calling with proper message flow."""
    for tool_call in tool_calls:
        function_name = tool_call["function"]["name"]
        
        if function_name in available_functions:
            # Parse and execute function
            function_args = json.loads(tool_call["function"]["arguments"])
            function_result = available_functions[function_name](**function_args)
            
            # Add function call and result to message history
            messages.append({
                "role": "assistant",
                "content": None,
                "tool_calls": [tool_call]
            })
            messages.append({
                "role": "tool",
                "tool_call_id": tool_call["id"],
                "name": function_name,
                "content": str(function_result)
            })
            
            # Call LLM again with updated context
            return self.call(messages, tools, None, available_functions)
    
    return "Function call failed"

Troubleshooting

Common Issues

Constructor Errors

# ❌ Wrong - missing required parameters
def __init__(self, api_key: str):
    super().__init__()

# ✅ Correct
def __init__(self, model: str, api_key: str, temperature: Optional[float] = None):
    super().__init__(model=model, temperature=temperature)

Function Calling Not Working

  • Ensure supports_function_calling() returns True
  • Check that you handle tool_calls in the response
  • Verify available_functions parameter is used correctly

Authentication Failures

  • Verify API key format and permissions
  • Check authentication header format
  • Ensure endpoint URLs are correct

Response Parsing Errors

  • Validate response structure before accessing nested fields
  • Handle cases where content might be None
  • Add proper error handling for malformed responses

Testing Your Custom LLM

from crewai import Agent, Task, Crew

def test_custom_llm():
    llm = CustomLLM(
        model="test-model",
        api_key="test-key",
        endpoint="https://api.test.com"
    )
    
    # Test basic call
    result = llm.call("Hello, world!")
    assert isinstance(result, str)
    assert len(result) > 0
    
    # Test with CrewAI agent
    agent = Agent(
        role="Test Agent",
        goal="Test custom LLM",
        backstory="A test agent.",
        llm=llm
    )
    
    task = Task(
        description="Say hello",
        expected_output="A greeting",
        agent=agent
    )
    
    crew = Crew(agents=[agent], tasks=[task])
    result = crew.kickoff()
    assert "hello" in result.raw.lower()

This guide covers the essentials of implementing custom LLMs in CrewAI.