InvokeCrewAIAutomationTool

The InvokeCrewAIAutomationTool provides CrewAI Platform API integration with external crew services. This tool allows you to invoke and interact with CrewAI Platform automations from within your CrewAI agents, enabling seamless integration between different crew workflows.

Installation

uv pip install 'crewai[tools]'

Requirements

  • CrewAI Platform API access
  • Valid bearer token for authentication
  • Network access to CrewAI Platform automation endpoints

Usage

Here’s how to use the tool with a CrewAI agent:
from crewai import Agent, Task, Crew
from crewai_tools import InvokeCrewAIAutomationTool

# Initialize the tool
automation_tool = InvokeCrewAIAutomationTool(
    crew_api_url="https://data-analysis-crew-[...].crewai.com",
    crew_bearer_token="your_bearer_token_here",
    crew_name="Data Analysis Crew",
    crew_description="Analyzes data and generates insights"
)

# Create a CrewAI agent that uses the tool
automation_coordinator = Agent(
    role='Automation Coordinator',
    goal='Coordinate and execute automated crew tasks',
    backstory='I am an expert at leveraging automation tools to execute complex workflows.',
    tools=[automation_tool],
    verbose=True
)

# Create a task for the agent
analysis_task = Task(
    description="Execute data analysis automation and provide insights",
    agent=automation_coordinator,
    expected_output="Comprehensive data analysis report"
)

# Create a crew with the agent
crew = Crew(
    agents=[automation_coordinator],
    tasks=[analysis_task],
    verbose=2
)

# Run the crew
result = crew.kickoff()
print(result)

Tool Arguments

ArgumentTypeRequiredDefaultDescription
crew_api_urlstrYesNoneBase URL of the CrewAI Platform automation API
crew_bearer_tokenstrYesNoneBearer token for API authentication
crew_namestrYesNoneName of the crew automation
crew_descriptionstrYesNoneDescription of what the crew automation does
max_polling_timeintNo600Maximum time in seconds to wait for task completion
crew_inputsdictNoNoneDictionary defining custom input schema fields

Environment Variables

CREWAI_API_URL=https://your-crew-automation.crewai.com  # Alternative to passing crew_api_url
CREWAI_BEARER_TOKEN=your_bearer_token_here              # Alternative to passing crew_bearer_token

Advanced Usage

Custom Input Schema with Dynamic Parameters

from crewai import Agent, Task, Crew
from crewai_tools import InvokeCrewAIAutomationTool
from pydantic import Field

# Define custom input schema
custom_inputs = {
    "year": Field(..., description="Year to retrieve the report for (integer)"),
    "region": Field(default="global", description="Geographic region for analysis"),
    "format": Field(default="summary", description="Report format (summary, detailed, raw)")
}

# Create tool with custom inputs
market_research_tool = InvokeCrewAIAutomationTool(
    crew_api_url="https://state-of-ai-report-crew-[...].crewai.com",
    crew_bearer_token="your_bearer_token_here",
    crew_name="State of AI Report",
    crew_description="Retrieves a comprehensive report on state of AI for a given year and region",
    crew_inputs=custom_inputs,
    max_polling_time=15 * 60  # 15 minutes timeout
)

# Create an agent with the tool
research_agent = Agent(
    role="Research Coordinator",
    goal="Coordinate and execute market research tasks",
    backstory="You are an expert at coordinating research tasks and leveraging automation tools.",
    tools=[market_research_tool],
    verbose=True
)

# Create and execute a task with custom parameters
research_task = Task(
    description="Conduct market research on AI tools market for 2024 in North America with detailed format",
    agent=research_agent,
    expected_output="Comprehensive market research report"
)

crew = Crew(
    agents=[research_agent],
    tasks=[research_task]
)

result = crew.kickoff()

Multi-Stage Automation Workflow

from crewai import Agent, Task, Crew, Process
from crewai_tools import InvokeCrewAIAutomationTool

# Initialize different automation tools
data_collection_tool = InvokeCrewAIAutomationTool(
    crew_api_url="https://data-collection-crew-[...].crewai.com",
    crew_bearer_token="your_bearer_token_here",
    crew_name="Data Collection Automation",
    crew_description="Collects and preprocesses raw data"
)

analysis_tool = InvokeCrewAIAutomationTool(
    crew_api_url="https://analysis-crew-[...].crewai.com",
    crew_bearer_token="your_bearer_token_here",
    crew_name="Analysis Automation",
    crew_description="Performs advanced data analysis and modeling"
)

reporting_tool = InvokeCrewAIAutomationTool(
    crew_api_url="https://reporting-crew-[...].crewai.com",
    crew_bearer_token="your_bearer_token_here",
    crew_name="Reporting Automation",
    crew_description="Generates comprehensive reports and visualizations"
)

# Create specialized agents
data_collector = Agent(
    role='Data Collection Specialist',
    goal='Gather and preprocess data from various sources',
    backstory='I specialize in collecting and cleaning data from multiple sources.',
    tools=[data_collection_tool]
)

data_analyst = Agent(
    role='Data Analysis Expert',
    goal='Perform advanced analysis on collected data',
    backstory='I am an expert in statistical analysis and machine learning.',
    tools=[analysis_tool]
)

report_generator = Agent(
    role='Report Generation Specialist',
    goal='Create comprehensive reports and visualizations',
    backstory='I excel at creating clear, actionable reports from complex data.',
    tools=[reporting_tool]
)

# Create sequential tasks
collection_task = Task(
    description="Collect market data for Q4 2024 analysis",
    agent=data_collector
)

analysis_task = Task(
    description="Analyze collected data to identify trends and patterns",
    agent=data_analyst
)

reporting_task = Task(
    description="Generate executive summary report with key insights and recommendations",
    agent=report_generator
)

# Create a crew with sequential processing
crew = Crew(
    agents=[data_collector, data_analyst, report_generator],
    tasks=[collection_task, analysis_task, reporting_task],
    process=Process.sequential,
    verbose=2
)

result = crew.kickoff()

Use Cases

Distributed Crew Orchestration

  • Coordinate multiple specialized crew automations to handle complex, multi-stage workflows
  • Enable seamless handoffs between different automation services for comprehensive task execution
  • Scale processing by distributing workloads across multiple CrewAI Platform automations

Cross-Platform Integration

  • Bridge CrewAI agents with CrewAI Platform automations for hybrid local-cloud workflows
  • Leverage specialized automations while maintaining local control and orchestration
  • Enable secure collaboration between local agents and cloud-based automation services

Enterprise Automation Pipelines

  • Create enterprise-grade automation pipelines that combine local intelligence with cloud processing power
  • Implement complex business workflows that span multiple automation services
  • Enable scalable, repeatable processes for data analysis, reporting, and decision-making

Dynamic Workflow Composition

  • Dynamically compose workflows by chaining different automation services based on task requirements
  • Enable adaptive processing where the choice of automation depends on data characteristics or business rules
  • Create flexible, reusable automation components that can be combined in various ways

Specialized Domain Processing

  • Access domain-specific automations (financial analysis, legal research, technical documentation) from general-purpose agents
  • Leverage pre-built, specialized crew automations without rebuilding complex domain logic
  • Enable agents to access expert-level capabilities through targeted automation services

Custom Input Schema

When defining crew_inputs, use Pydantic Field objects to specify the input parameters:
from pydantic import Field

crew_inputs = {
    "required_param": Field(..., description="This parameter is required"),
    "optional_param": Field(default="default_value", description="This parameter is optional"),
    "typed_param": Field(..., description="Integer parameter", ge=1, le=100)  # With validation
}

Error Handling

The tool provides comprehensive error handling for common scenarios:
  • API Connection Errors: Network connectivity issues with CrewAI Platform
  • Authentication Errors: Invalid or expired bearer tokens
  • Timeout Errors: Tasks that exceed the maximum polling time
  • Task Failures: Crew automations that fail during execution
  • Input Validation Errors: Invalid parameters passed to automation endpoints

API Endpoints

The tool interacts with two main API endpoints:
  • POST {crew_api_url}/kickoff: Starts a new crew automation task
  • GET {crew_api_url}/status/{crew_id}: Checks the status of a running task

Notes

  • The tool automatically polls the status endpoint every second until completion or timeout
  • Successful tasks return the result directly, while failed tasks return error information
  • Bearer tokens should be kept secure and not hardcoded in production environments
  • Consider using environment variables for sensitive configuration like bearer tokens
  • Custom input schemas must be compatible with the target crew automation’s expected parameters