Construa seu primeiro Agente CrewAI

Vamos criar uma tripulação simples que nos ajudará a pesquisar e relatar sobre os últimos avanços em IA para um determinado tópico ou assunto.

Antes de prosseguir, certifique-se de ter concluído a instalação da CrewAI. Se ainda não instalou, faça isso seguindo o guia de instalação.

Siga os passos abaixo para começar a tripular! 🚣‍♂️

1

Crie sua tripulação

Crie um novo projeto de tripulação executando o comando abaixo em seu terminal. Isso criará um novo diretório chamado latest-ai-development com a estrutura básica para sua tripulação.

crewai create crew latest-ai-development
2

Navegue até o novo projeto da sua tripulação

cd latest-ai-development
3

Modifique seu arquivo `agents.yaml`

Você também pode modificar os agentes conforme necessário para atender ao seu caso de uso ou copiar e colar como está para seu projeto. Qualquer variável interpolada nos seus arquivos agents.yaml e tasks.yaml, como {topic}, será substituída pelo valor da variável no arquivo main.py.

agents.yaml
# src/latest_ai_development/config/agents.yaml
researcher:
  role: >
    {topic} Senior Data Researcher
  goal: >
    Uncover cutting-edge developments in {topic}
  backstory: >
    You're a seasoned researcher with a knack for uncovering the latest
    developments in {topic}. Known for your ability to find the most relevant
    information and present it in a clear and concise manner.

reporting_analyst:
  role: >
    {topic} Reporting Analyst
  goal: >
    Create detailed reports based on {topic} data analysis and research findings
  backstory: >
    You're a meticulous analyst with a keen eye for detail. You're known for
    your ability to turn complex data into clear and concise reports, making
    it easy for others to understand and act on the information you provide.
4

Modifique seu arquivo `tasks.yaml`

tasks.yaml
# src/latest_ai_development/config/tasks.yaml
research_task:
  description: >
    Conduct a thorough research about {topic}
    Make sure you find any interesting and relevant information given
    the current year is 2025.
  expected_output: >
    A list with 10 bullet points of the most relevant information about {topic}
  agent: researcher

reporting_task:
  description: >
    Review the context you got and expand each topic into a full section for a report.
    Make sure the report is detailed and contains any and all relevant information.
  expected_output: >
    A fully fledge reports with the mains topics, each with a full section of information.
    Formatted as markdown without '```'
  agent: reporting_analyst
  output_file: report.md
5

Modifique seu arquivo `crew.py`

crew.py
# src/latest_ai_development/crew.py
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
from crewai_tools import SerperDevTool
from crewai.agents.agent_builder.base_agent import BaseAgent
from typing import List

@CrewBase
class LatestAiDevelopmentCrew():
  """LatestAiDevelopment crew"""

  agents: List[BaseAgent]
  tasks: List[Task]

  @agent
  def researcher(self) -> Agent:
    return Agent(
      config=self.agents_config['researcher'], # type: ignore[index]
      verbose=True,
      tools=[SerperDevTool()]
    )

  @agent
  def reporting_analyst(self) -> Agent:
    return Agent(
      config=self.agents_config['reporting_analyst'], # type: ignore[index]
      verbose=True
    )

  @task
  def research_task(self) -> Task:
    return Task(
      config=self.tasks_config['research_task'], # type: ignore[index]
    )

  @task
  def reporting_task(self) -> Task:
    return Task(
      config=self.tasks_config['reporting_task'], # type: ignore[index]
      output_file='output/report.md' # This is the file that will be contain the final report.
    )

  @crew
  def crew(self) -> Crew:
    """Creates the LatestAiDevelopment crew"""
    return Crew(
      agents=self.agents, # Automatically created by the @agent decorator
      tasks=self.tasks, # Automatically created by the @task decorator
      process=Process.sequential,
      verbose=True,
    )
6

[Opcional] Adicione funções de pré e pós execução da tripulação

crew.py
# src/latest_ai_development/crew.py
from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task, before_kickoff, after_kickoff
from crewai_tools import SerperDevTool

@CrewBase
class LatestAiDevelopmentCrew():
  """LatestAiDevelopment crew"""

  @before_kickoff
  def before_kickoff_function(self, inputs):
    print(f"Before kickoff function with inputs: {inputs}")
    return inputs # You can return the inputs or modify them as needed

  @after_kickoff
  def after_kickoff_function(self, result):
    print(f"After kickoff function with result: {result}")
    return result # You can return the result or modify it as needed

  # ... remaining code
7

Fique à vontade para passar entradas personalizadas para sua tripulação

Por exemplo, você pode passar o input topic para sua tripulação para personalizar a pesquisa e o relatório.

main.py
#!/usr/bin/env python
# src/latest_ai_development/main.py
import sys
from latest_ai_development.crew import LatestAiDevelopmentCrew

def run():
  """
  Run the crew.
  """
  inputs = {
    'topic': 'AI Agents'
  }
  LatestAiDevelopmentCrew().crew().kickoff(inputs=inputs)
8

Defina suas variáveis de ambiente

Antes de executar sua tripulação, certifique-se de ter as seguintes chaves configuradas como variáveis de ambiente no seu arquivo .env:

  • Uma chave da API do Serper.dev: SERPER_API_KEY=YOUR_KEY_HERE
  • A configuração do modelo de sua escolha, como uma chave de API. Veja o guia de configuração do LLM para aprender como configurar modelos de qualquer provedor.
9

Trave e instale as dependências

  • Trave e instale as dependências utilizando o comando da CLI:
    crewai install
    
  • Se quiser instalar pacotes adicionais, faça isso executando:
    uv add <package-name>
    
10

Execute sua tripulação

  • Para executar sua tripulação, rode o seguinte comando na raiz do projeto:
    crewai run
    
11

Alternativa para Empresas: Crie no Crew Studio

Para usuários do CrewAI Enterprise, você pode criar a mesma tripulação sem escrever código:

  1. Faça login na sua conta CrewAI Enterprise (crie uma conta gratuita em app.crewai.com)
  2. Abra o Crew Studio
  3. Digite qual automação deseja construir
  4. Crie suas tarefas visualmente e conecte-as em sequência
  5. Configure seus inputs e clique em “Download Code” ou “Deploy”

Experimente o CrewAI Enterprise

Comece sua conta gratuita no CrewAI Enterprise

12

Veja seu relatório final

Você verá a saída no console e o arquivo report.md deve ser criado na raiz do seu projeto com o relatório final.

Veja um exemplo de como o relatório deve ser:

# Comprehensive Report on the Rise and Impact of AI Agents in 2025

## 1. Introduction to AI Agents
In 2025, Artificial Intelligence (AI) agents are at the forefront of innovation across various industries. As intelligent systems that can perform tasks typically requiring human cognition, AI agents are paving the way for significant advancements in operational efficiency, decision-making, and overall productivity within sectors like Human Resources (HR) and Finance. This report aims to detail the rise of AI agents, their frameworks, applications, and potential implications on the workforce.

## 2. Benefits of AI Agents
AI agents bring numerous advantages that are transforming traditional work environments. Key benefits include:

- **Task Automation**: AI agents can carry out repetitive tasks such as data entry, scheduling, and payroll processing without human intervention, greatly reducing the time and resources spent on these activities.
- **Improved Efficiency**: By quickly processing large datasets and performing analyses that would take humans significantly longer, AI agents enhance operational efficiency. This allows teams to focus on strategic tasks that require higher-level thinking.
- **Enhanced Decision-Making**: AI agents can analyze trends and patterns in data, provide insights, and even suggest actions, helping stakeholders make informed decisions based on factual data rather than intuition alone.

## 3. Popular AI Agent Frameworks
Several frameworks have emerged to facilitate the development of AI agents, each with its own unique features and capabilities. Some of the most popular frameworks include:

- **Autogen**: A framework designed to streamline the development of AI agents through automation of code generation.
- **Semantic Kernel**: Focuses on natural language processing and understanding, enabling agents to comprehend user intentions better.
- **Promptflow**: Provides tools for developers to create conversational agents that can navigate complex interactions seamlessly.
- **Langchain**: Specializes in leveraging various APIs to ensure agents can access and utilize external data effectively.
- **CrewAI**: Aimed at collaborative environments, CrewAI strengthens teamwork by facilitating communication through AI-driven insights.
- **MemGPT**: Combines memory-optimized architectures with generative capabilities, allowing for more personalized interactions with users.

These frameworks empower developers to build versatile and intelligent agents that can engage users, perform advanced analytics, and execute various tasks aligned with organizational goals.

## 4. AI Agents in Human Resources
AI agents are revolutionizing HR practices by automating and optimizing key functions:

- **Recruiting**: AI agents can screen resumes, schedule interviews, and even conduct initial assessments, thus accelerating the hiring process while minimizing biases.
- **Succession Planning**: AI systems analyze employee performance data and potential, helping organizations identify future leaders and plan appropriate training.
- **Employee Engagement**: Chatbots powered by AI can facilitate feedback loops between employees and management, promoting an open culture and addressing concerns promptly.

As AI continues to evolve, HR departments leveraging these agents can realize substantial improvements in both efficiency and employee satisfaction.

## 5. AI Agents in Finance
The finance sector is seeing extensive integration of AI agents that enhance financial practices:

- **Expense Tracking**: Automated systems manage and monitor expenses, flagging anomalies and offering recommendations based on spending patterns.
- **Risk Assessment**: AI models assess credit risk and uncover potential fraud by analyzing transaction data and behavioral patterns.
- **Investment Decisions**: AI agents provide stock predictions and analytics based on historical data and current market conditions, empowering investors with informative insights.

The incorporation of AI agents into finance is fostering a more responsive and risk-aware financial landscape.

## 6. Market Trends and Investments
The growth of AI agents has attracted significant investment, especially amidst the rising popularity of chatbots and generative AI technologies. Companies and entrepreneurs are eager to explore the potential of these systems, recognizing their ability to streamline operations and improve customer engagement.

Conversely, corporations like Microsoft are taking strides to integrate AI agents into their product offerings, with enhancements to their Copilot 365 applications. This strategic move emphasizes the importance of AI literacy in the modern workplace and indicates the stabilizing of AI agents as essential business tools.

## 7. Future Predictions and Implications
Experts predict that AI agents will transform essential aspects of work life. As we look toward the future, several anticipated changes include:

- Enhanced integration of AI agents across all business functions, creating interconnected systems that leverage data from various departmental silos for comprehensive decision-making.
- Continued advancement of AI technologies, resulting in smarter, more adaptable agents capable of learning and evolving from user interactions.
- Increased regulatory scrutiny to ensure ethical use, especially concerning data privacy and employee surveillance as AI agents become more prevalent.

To stay competitive and harness the full potential of AI agents, organizations must remain vigilant about latest developments in AI technology and consider continuous learning and adaptation in their strategic planning.

## 8. Conclusion
The emergence of AI agents is undeniably reshaping the workplace landscape in 5. With their ability to automate tasks, enhance efficiency, and improve decision-making, AI agents are critical in driving operational success. Organizations must embrace and adapt to AI developments to thrive in an increasingly digital business environment.

Parabéns!

Você configurou seu projeto de tripulação com sucesso e está pronto para começar a construir seus próprios fluxos de trabalho baseados em agentes!

Observação sobre Consistência nos Nomes

Os nomes utilizados nos seus arquivos YAML (agents.yaml e tasks.yaml) devem corresponder aos nomes dos métodos no seu código Python. Por exemplo, você pode referenciar o agente para tarefas específicas a partir do arquivo tasks.yaml. Essa consistência de nomes permite que a CrewAI conecte automaticamente suas configurações ao seu código; caso contrário, sua tarefa não reconhecerá a referência corretamente.

Exemplos de Referências

Observe como usamos o mesmo nome para o agente no arquivo agents.yaml (email_summarizer) e no método do arquivo crew.py (email_summarizer).

agents.yaml
email_summarizer:
    role: >
      Email Summarizer
    goal: >
      Summarize emails into a concise and clear summary
    backstory: >
      You will create a 5 bullet point summary of the report
    llm: provider/model-id  # Add your choice of model here

Observe como usamos o mesmo nome para a tarefa no arquivo tasks.yaml (email_summarizer_task) e no método no arquivo crew.py (email_summarizer_task).

tasks.yaml
email_summarizer_task:
    description: >
      Summarize the email into a 5 bullet point summary
    expected_output: >
      A 5 bullet point summary of the email
    agent: email_summarizer
    context:
      - reporting_task
      - research_task

Fazendo o Deploy da Sua Tripulação

A forma mais fácil de fazer deploy da sua tripulação em produção é através da CrewAI Enterprise.

Assista a este vídeo tutorial para uma demonstração detalhada de como fazer deploy da sua tripulação na CrewAI Enterprise usando a CLI.