from crewai import Agent, Crew, Task
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
from crewai_tools import SerperDevTool, WebsiteSearchTool
from textwrap import dedent
content = "Users name is John. He is 30 years old and lives in San Francisco."
string_source = StringKnowledgeSource(
content=content, metadata={"preference": "personal"}
)
search_tool = WebsiteSearchTool()
class TripAgents:
def city_selection_agent(self):
especialista_cidades = Agent(
role="Especialista em Seleção de Cidades",
goal="Selecionar a melhor cidade com base no clima, estação e preços",
backstory="Especialista em analisar dados de viagem para escolher destinos ideais",
tools=[search_tool],
verbose=True,
)
def local_expert(self):
especialista_local = Agent(
role="Especialista Local nesta cidade",
goal="Fornecer as MELHORES informações sobre a cidade selecionada",
backstory="Um guia local experiente com amplo conhecimento sobre a cidade, suas atrações e costumes",
tools=[search_tool],
verbose=True,
)
class TripTasks:
def identify_task(self, agent, origin, cities, interests, range):
return Task(
description=dedent(
f"""
Analise e selecione a melhor cidade para a viagem com base em critérios específicos como padrões climáticos, eventos sazonais e custos de viagem. Esta tarefa envolve comparar várias cidades, considerando fatores como condições climáticas atuais, eventos culturais ou sazonais e despesas gerais de viagem.
Sua resposta final deve ser um relatório detalhado sobre a cidade escolhida e tudo o que você descobriu sobre ela, incluindo custos reais de voo, previsão do tempo e atrações.
Saindo de: {origin}
Opções de cidades: {cities}
Data da viagem: {range}
Interesses do viajante: {interests}
"""
),
agent=agent,
expected_output="Relatório detalhado sobre a cidade escolhida incluindo custos de voo, previsão do tempo e atrações",
)
def gather_task(self, agent, origin, interests, range):
return Task(
description=dedent(
f"""
Como especialista local nesta cidade, você deve compilar um guia aprofundado para alguém que está viajando para lá e quer ter a MELHOR viagem possível!
Reúna informações sobre principais atrações, costumes locais, eventos especiais e recomendações de atividades diárias.
Encontre os melhores lugares para ir, aqueles que só um local conhece.
Este guia deve fornecer uma visão abrangente do que a cidade tem a oferecer, incluindo joias escondidas, pontos culturais, marcos imperdíveis, previsão do tempo e custos gerais.
A resposta final deve ser um guia completo da cidade, rico em insights culturais e dicas práticas, adaptado para aprimorar a experiência de viagem.
Data da viagem: {range}
Saindo de: {origin}
Interesses do viajante: {interests}
"""
),
agent=agent,
expected_output="Guia completo da cidade incluindo joias escondidas, pontos culturais e dicas práticas",
)
class TripCrew:
def __init__(self, origin, cities, date_range, interests):
self.cities = cities
self.origin = origin
self.interests = interests
self.date_range = date_range
def run(self):
agents = TripAgents()
tasks = TripTasks()
city_selector_agent = agents.city_selection_agent()
local_expert_agent = agents.local_expert()
identify_task = tasks.identify_task(
city_selector_agent,
self.origin,
self.cities,
self.interests,
self.date_range,
)
gather_task = tasks.gather_task(
local_expert_agent, self.origin, self.interests, self.date_range
)
crew = Crew(
agents=[city_selector_agent, local_expert_agent],
tasks=[identify_task, gather_task],
verbose=True,
memory=True,
knowledge={
"sources": [string_source],
"metadata": {"preference": "personal"},
},
)
result = crew.kickoff()
return result
trip_crew = TripCrew("California", "Tokyo", "Dec 12 - Dec 20", "sports")
result = trip_crew.run()
print("Resultado da equipe:", result)