CrewAI integra-se perfeitamente com a abrangente lista de ferramentas do LangChain, todas as quais podem ser usadas com CrewAI.
Code
Copy
Ask AI
import osfrom dotenv import load_dotenvfrom crewai import Agent, Task, Crewfrom crewai.tools import BaseToolfrom pydantic import Fieldfrom langchain_community.utilities import GoogleSerperAPIWrapper# Set up your SERPER_API_KEY key in an .env file, eg:# SERPER_API_KEY=<your api key>load_dotenv()search = GoogleSerperAPIWrapper()class SearchTool(BaseTool): name: str = "Search" description: str = "Useful for search-based queries. Use this to find current information about markets, companies, and trends." search: GoogleSerperAPIWrapper = Field(default_factory=GoogleSerperAPIWrapper) def _run(self, query: str) -> str: """Execute the search query and return results""" try: return self.search.run(query) except Exception as e: return f"Error performing search: {str(e)}"# Create Agentsresearcher = Agent( role='Research Analyst', goal='Gather current market data and trends', backstory="""You are an expert research analyst with years of experience in gathering market intelligence. You're known for your ability to find relevant and up-to-date market information and present it in a clear, actionable format.""", tools=[SearchTool()], verbose=True)# rest of the code ...
As ferramentas são fundamentais para ampliar as capacidades dos agentes CrewAI, permitindo que realizem uma ampla variedade de tarefas e colaborem de forma eficaz.
Ao construir soluções com CrewAI, aproveite tanto ferramentas personalizadas quanto existentes para potencializar seus agentes e aprimorar o ecossistema de IA. Considere utilizar tratamento de erros, mecanismos de cache e a flexibilidade dos argumentos das ferramentas para otimizar o desempenho e as capacidades dos seus agentes.