개요

CrewAI는 LiteLLM을 통해 다양한 LLM 제공업체와 통합되어, 특정 사용 사례에 맞는 올바른 모델을 선택할 수 있는 유연성을 제공합니다. 이 가이드는 CrewAI 프로젝트에서 다양한 LLM 제공업체를 구성하고 사용하는 방법을 이해하는 데 도움이 될 것입니다.

LLM이란 무엇인가요?

Large Language Models(LLM)는 CrewAI 에이전트의 핵심 지능입니다. 에이전트가 문맥을 이해하고, 결정을 내리며, 인간과 유사한 응답을 생성할 수 있도록 합니다. 알아두어야 할 내용은 다음과 같습니다:

LLM 기본

Large Language Models는 방대한 양의 텍스트 데이터로 학습된 AI 시스템입니다. CrewAI 에이전트의 지능을 구동하여, 인간과 유사한 텍스트를 이해하고 생성할 수 있도록 합니다.

컨텍스트 윈도우

컨텍스트 윈도우는 LLM이 한 번에 처리할 수 있는 텍스트 양을 결정합니다. 더 큰 윈도우(예: 128K 토큰)는 더 많은 문맥을 다룰 수 있지만, 비용과 속도 면에서 더 부담이 될 수 있습니다.

Temperature

Temperature(0.0에서 1.0)는 응답의 무작위성을 조절합니다. 낮은 값(예: 0.2)은 더 집중적이고 결정적인 결과를, 높은 값(예: 0.8)은 창의성과 다양성을 높입니다.

제공자 선택

각 LLM 제공자(예: OpenAI, Anthropic, Google)는 다양한 기능, 가격, 특성을 가진 모델을 제공합니다. 정확성, 속도, 비용 등 요구 사항에 따라 선택하세요.

LLM 설정하기

CrewAI 코드 내에는 사용할 모델을 지정할 수 있는 여러 위치가 있습니다. 모델을 지정한 후에는 사용하는 각 모델 제공자에 대한 설정(예: API 키)을 제공해야 합니다. 각 제공자에 맞는 제공자 설정 예제 섹션을 참고하세요.
가장 간단하게 시작할 수 있는 방법입니다. .env 파일이나 앱 코드에서 환경 변수로 직접 모델을 설정할 수 있습니다. crewai create를 사용해 프로젝트를 부트스트랩했다면 이미 설정되어 있을 수 있습니다.
.env
MODEL=model-id  # e.g. gpt-4o, gemini-2.0-flash, claude-3-sonnet-...

# 반드시 여기에서 API 키도 설정하세요. 아래 제공자
# 섹션을 참고하세요.
API 키를 절대 버전 관리 시스템에 커밋하지 마세요. 환경 파일(.env)이나 시스템의 비밀 관리 기능을 사용하세요.

공급자 구성 예시

CrewAI는 고유한 기능, 인증 방법, 모델 역량을 제공하는 다양한 LLM 공급자를 지원합니다.
이 섹션에서는 프로젝트의 요구에 가장 적합한 LLM을 선택, 구성, 최적화하는 데 도움이 되는 자세한 예시를 제공합니다.

스트리밍 응답

CrewAI는 LLM의 스트리밍 응답을 지원하여, 애플리케이션이 출력물을 생성되는 즉시 실시간으로 수신하고 처리할 수 있습니다.
LLM을 초기화할 때 stream 파라미터를 True로 설정하여 스트리밍을 활성화합니다:
from crewai import LLM

# 스트리밍이 활성화된 LLM 생성
llm = LLM(
    model="openai/gpt-4o",
    stream=True  # 스트리밍 활성화
)
스트리밍이 활성화되면, 응답이 생성되는 대로 청크 단위로 전달되어 보다 반응성 있는 사용자 경험을 만듭니다.

구조화된 LLM 호출

CrewAI는 Pydantic 모델을 사용하여 response_format을 정의함으로써 LLM 호출에서 구조화된 응답을 지원합니다. 이를 통해 프레임워크가 출력을 자동으로 파싱하고 검증할 수 있어, 수동 후처리 없이도 응답을 애플리케이션에 쉽게 통합할 수 있습니다. 예를 들어, 예상되는 응답 구조를 나타내는 Pydantic 모델을 정의하고 LLM을 인스턴스화할 때 response_format으로 전달할 수 있습니다. 이 모델은 LLM 출력을 구조화된 Python 객체로 변환하는 데 사용됩니다.
Code
from crewai import LLM

class Dog(BaseModel):
    name: str
    age: int
    breed: str


llm = LLM(model="gpt-4o", response_format=Dog)

response = llm.call(
    "Analyze the following messages and return the name, age, and breed. "
    "Meet Kona! She is 3 years old and is a black german shepherd."
)
print(response)

# Output:
# Dog(name='Kona', age=3, breed='black german shepherd')

고급 기능 및 최적화

LLM 설정을 최대한 활용하는 방법을 알아보세요:

일반적인 문제 및 해결 방법

대부분의 인증 문제는 API 키 형식과 환경 변수 이름을 확인하여 해결할 수 있습니다.
# OpenAI
OPENAI_API_KEY=sk-...

# Anthropic
ANTHROPIC_API_KEY=sk-ant-...