MDXSearchTool
MDXSearchTool은 지속적으로 개발 중입니다. 기능이 추가되거나 제거될 수 있으며, 도구를 개선하는 과정에서 기능이 예측할 수 없이 변경될 수 있습니다.
 
MDX Search Tool은 고급 markdown 언어 추출을 용이하게 하기 위해 설계된 crewai_tools 패키지의 구성 요소입니다. 이 도구는 사용자가 쿼리 기반 검색을 통해 MD 파일에서 관련 정보를 효과적으로 검색하고 추출할 수 있게 해줍니다. 데이터 분석, 정보 관리, 연구 작업에 매우 유용하며, 대규모 문서 컬렉션 내에서 특정 정보를 찾는 과정을 간소화합니다.
MDX Search Tool을 사용하기 전에 crewai_tools 패키지가 설치되어 있는지 확인하세요. 설치되어 있지 않다면, 다음 명령어로 설치할 수 있습니다:
pip install 'crewai[tools]'
 
사용 예시
MDX Search Tool을 사용하려면 먼저 필요한 환경 변수를 설정해야 합니다. 그런 다음 이 도구를 crewAI 프로젝트에 통합하여 시장 조사를 시작할 수 있습니다. 아래는 이를 수행하는 기본 예시입니다:
from crewai_tools import MDXSearchTool
# Initialize the tool to search any MDX content it learns about during execution
tool = MDXSearchTool()
# OR
# Initialize the tool with a specific MDX file path for an exclusive search within that document
tool = MDXSearchTool(mdx='path/to/your/document.mdx')
 
매개변수
- mdx: 선택 사항. 검색에 사용할 MDX 파일 경로를 지정합니다. 초기화 시 제공할 수 있습니다.
 
모델 및 임베딩 커스터마이징
이 도구는 기본적으로 임베딩과 요약을 위해 OpenAI를 사용합니다. 커스터마이징을 위해 아래와 같이 설정 딕셔너리를 사용할 수 있습니다.
from chromadb.config import Settings
tool = MDXSearchTool(
    config={
        "embedding_model": {
            "provider": "openai",
            "config": {
                "model": "text-embedding-3-small",
                # "api_key": "sk-...",
            },
        },
        "vectordb": {
            "provider": "chromadb",  # 또는 "qdrant"
            "config": {
                # "settings": Settings(persist_directory="/content/chroma", allow_reset=True, is_persistent=True),
                # from qdrant_client.models import VectorParams, Distance
                # "vectors_config": VectorParams(size=384, distance=Distance.COSINE),
            }
        },
    }
)